The Fund supports networks of state health policy decision makers to help identify, inspire, and inform policy leaders.
The Milbank Memorial Fund supports two state leadership programs for legislative and executive branch state government officials committed to improving population health.
The Fund identifies and shares policy ideas and analysis to advance state health leadership, strong primary care, and sustainable health care costs.
Keep up with news and updates from the Milbank Memorial Fund. And read the latest blogs from our thought leaders, including Fund President Christopher F. Koller.
The Fund publishes The Milbank Quarterly, as well as reports, issues briefs, and case studies on topics important to health policy leaders.
The Milbank Memorial Fund is is a foundation that works to improve population health and health equity.
March 2024 (Volume 102)
Quarterly Article
Duncan A. Clark
James Macinko
Maurizio Porfiri
December 2024
September 2024
Back to The Milbank Quarterly
Policy Points:
Context: US states are largely responsible for the regulation of firearms within their borders. Each state has developed a different legal environment with regard to firearms based on different values and beliefs of citizens, legislators, governors, and other stakeholders. Predicting the types of firearm laws that states may adopt is therefore challenging.
Methods: We propose a parsimonious model for this complex process and provide credible predictions of state firearm laws by estimating the likelihood they will be passed in the future. We employ a temporal exponential-family random graph model to capture the bipartite state law–state network data over time, allowing for complex interdependencies and their temporal evolution. Using data on all state firearm laws over the period 1979–2020, we estimate these models’ parameters while controlling for factors associated with firearm law adoption, including internal and external state characteristics. Predictions of future firearm law passage are then calculated based on a number of scenarios to assess the effects of a given type of firearm law being passed in the future by a given state.
Findings: Results show that a set of internal state factors are important predictors of firearm law adoption, but the actions of neighboring states may be just as important. Analysis of scenarios provide insights into the mechanics of how adoption of laws by specific states (or groups of states) may perturb the rest of the network structure and alter the likelihood that new laws would become more (or less) likely to continue to diffuse to other states.
Conclusions: The methods used here outperform standard approaches for policy diffusion studies and afford predictions that are superior to those of an ensemble of machine learning tools. The proposed framework could have applications for the study of policy diffusion in other domains.